The largest eigenvalue of small rank perturbations of Hermitian random matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the largest-eigenvalue process for generalized Wishart random matrices

Using a change-of-measure argument, we prove an equality in law between the process of largest eigenvalues in a generalized Wishart random-matrix process and a last-passage percolation process. This equality in law was conjectured by Borodin and Péché (2008).

متن کامل

Almost-Hermitian Random Matrices: Eigenvalue Density in the Complex Plane

We consider an ensemble of large non-Hermitian random matrices of the form Ĥ + iÂs, where Ĥ and Âs are Hermitian statistically independent random N × N matrices. We demonstrate the existence of a new nontrivial regime of weak non-Hermiticity characterized by the condition that the average of NTrÂs is of the same order as that of TrĤ 2 when N → ∞. We find explicitly the density of complex eigenv...

متن کامل

The Largest Eigenvalue Of Sparse Random Graphs

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1))max{ √ ∆, np}, where ∆ is a maximal degree of G, and the o(1) term tends to zero as max{ √ ∆, np} tends to infinity.

متن کامل

The largest eigenvalue of rank one deformation of large Wigner matrices

The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue of some non necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (c.f. [12]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of hig...

متن کامل

Hermitian Matrices, Eigenvalue Multiplicities, and Eigenvector Components

Given an n-by-n Hermitian matrix A and a real number λ, index i is said to be Parter (resp. neutral, downer) if the multiplicity of λ as an eigenvalue of A(i) is one more (resp. the same, one less) than that in A. In case the multiplicity of λ in A is at least 2 and the graph of A is a tree, there are always Parter vertices. Our purpose here is to advance the classification of vertices and, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2005

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-005-0480-1